A Machine Learning Approach for Anomaly Detection to Secure Smart Grid Systems

Author:

Singh Richa1,Singh Arunendra1ORCID,Bhattacharya Pronaya2

Affiliation:

1. Pranveer Singh Institute of Technology, India

2. Institute of Technology, Nirma University, India

Abstract

The rapid industrial growth in cyber-physical systems has led to upgradation of the traditional power grid into a network communication infrastructure. The benefits of integrating smart components have brought about security issues as attack perimeter has increased. In this chapter, firstly, the authors train the network on the results generated by the uncompromised grid network result dataset and then extract valuable features by the various system calls made by the kernel on the grid and after that internal operations being performed. Analyzing the metrics and predicting how the call lists are differing in call types, parameters being passed to the OS, the size of the system calls, and return values of the calls of both the systems and identifying benign devices from the compromised ones in the test bed are done. Predictions can be accurately made on the device behavior in the smart grid and calculating the efficiency of correct detection vs. false detection according to the confusion matrix, and finally, accuracy and F-score will be computed against successful anomaly detection behavior.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly Detectionin Network Traffic Scenarios by Resampling and Majority Voting with Concept Drift: A Hybrid Approach;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14

2. Fusion of blockchain and IoT in scientific publishing: Taxonomy, tools, and future directions;Future Generation Computer Systems;2023-05

3. Machine Learning Techniques for Anomaly Detection in Network Traffic;2021 Sixth International Conference on Image Information Processing (ICIIP);2021-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3