Progressive Bearing Fault Detection in a Three-Phase Induction Motor Using S-Transform via Pre-Fault Frequency Cancellation

Author:

K. K. C. Deekshit1,Madhav G. Venu2

Affiliation:

1. Sreenidhi Institute of Science and Technology, India

2. Anurag University, India

Abstract

Detection of bearing faults have become crucial in electrical machines, particularly in induction motors. Conventional monitoring procedures using vibration sensors, temperature sensors, etc. are costly and need more tests to estimate the nature of fault. Hence, the current monitoring attracts the concentration of many industries for continuous monitoring. Spectral analysis of stator current to estimate motor faults, FFT analysis, is commonly preferred. But the problems associated with normal FFT analysis will mislead the fault diagnosis. Therefore, advanced spectral methods like wavelet transforms, matrix pencil method, MUSIC algorithm, s-transforms have been proposed. But each technique requires special attention to get good results. On the other hand, faults experienced by the induction motor can be categorized into bearing-related, rotor- and stator-related, and eccentricity. Among these faults, bearing damage accounts for 40-90% and requires additional concentration to estimate.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3