Modelling a Deep Learning-Based Wireless Sensor Network Task Assignment Algorithm

Author:

Issac Titus1ORCID,Silas Salaja1,Rajsingh Elijah Blessing1

Affiliation:

1. Karunya Institute of Technology and Sciences, India

Abstract

The 21st century is witnessing the emergence of a wide variety of wireless sensor network (WSN) applications ranging from simple environmental monitoring to complex satellite monitoring applications. The advent of complex WSN applications has led to a massive transition in the development, functioning, and capabilities of wireless sensor nodes. The contemporary nodes have multi-functional capabilities enabling the heterogeneous WSN applications. The future of WSN task assignment envisions WSN to be heterogeneous network with minimal human interaction. This led to the investigative model of a deep learning-based task assignment algorithm. The algorithm employs a multilayer feed forward neural network (MLFFNN) trained by particle swarm optimization (PSO) for solving task assignment problem in a dynamic centralized heterogeneous WSN. The analyses include the study of hidden layers and effectiveness of the task assignment algorithms. The chapter would be highly beneficial to a wide range of audiences employing the machine and deep learning in WSN.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3