Review on the Application of Lexicon-Based Political Sentiment Analysis in Social Media

Author:

Valle-Cruz David1,López-Chau Asdrúbal1,Sandoval-Almazán Rodrigo1ORCID

Affiliation:

1. Autonomous University of the State of Mexico, Mexico

Abstract

This chapter presented an analysis of the application of lexicon-based political sentiment analysis in social media. The aim is to identify the most frequently used lexicons in political sentiment analysis, their results, similarities, and differences. For this, the authors conducted a systematic literature review based on PRISMA methodology. Afinn, NRC, and SenticNet lexicons are tested and combined for data analysis from the 2020 U.S. presidential campaign. Findings show that political sentiment analysis is a new field studied for only 10 years. Political sentiment analysis could generate benefits in understanding problems such as political polarization, discourse analysis, politician influence, candidate profiling, and improving government-citizen interaction, among other problems in the public sphere, enhanced by the combination of lexicons and multimodal analysis. The authors conclude that polarity was one of the critical dimensions identified for finding variations in the behavior and polarity of sentiments. Limitations and future work also are presented.

Publisher

IGI Global

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Augmenting sentiment prediction capabilities for code-mixed tweets with multilingual transformers;Social Network Analysis and Mining;2024-04-15

2. Affective Polarization in the U.S.;Advances in Computational Intelligence and Robotics;2022-12-30

3. Introduction to Artificial Intelligence for the Analytics of Literary Works and Social Media;Advances in Computational Intelligence and Robotics;2022-12-30

4. Analytics of Public Reactions to the COVID-19 Vaccine on Twitter Using Sentiment Analysis and Topic Modelling;Handbook of Research on Applied Artificial Intelligence and Robotics for Government Processes;2022-09-16

5. Review on the Application of Artificial Intelligence-Based Chatbots in Public Administration;Handbook of Research on Applied Artificial Intelligence and Robotics for Government Processes;2022-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3