Threat Emotion Analysis in Social Media

Author:

Ibañez Marilyn Minicucci1,Rosa Reinaldo Roberto2,Guimarães Lamartine Nogueira Frutuoso3

Affiliation:

1. National Institute of Space Research, Brazil & Federal Institute of São Paulo, Brazil

2. National Institute for Space Research, Brazil

3. Institute for Advanced Studies, Brazil & Instituto Tecnológico de Aeronáutica, Brazil & National Institute for Space Research, Brazil

Abstract

In recent decades, the internet access growth has generated a substantial increase in the information circulation in social media. Within the information variety circulating on the internet, extreme social events such as armed conflicts have become areas of great public interest because of their direct influence on society. The study of such data from social media is useful in understanding an event's evolution, in particular how threats over time can generate an endogenous evolution resulting in an extreme event. This chapter uses the technique of sentiment analysis to identify the threat degree of news about armed conflicts distributed in social media. This analysis generates an endogenous threat time series that is used to predict the future threat variation of the analyzed extreme social events. In the prediction of the endogenous time series, the authors apply the deep learning technique in a structure that uses the long short-term memory (LSTM) neural network.

Publisher

IGI Global

Reference50 articles.

1. A deep learning framework for financial time series using stacked autoencoders and long-short term memory

2. BirdS.KleinE.LoperE. (2009). Natural language processing wiht python: analysing text with the natural language toolkit. O’Reilly Media.

3. Bonn, U. (2019). Venema P-Model algorithm. Retrieved from https://www2.meteo.uni-bonn.de/staff/venema/themes/surrogates/

4. Brownlee, J. (2017, May 24). A Gentle introduction to long short-term memory networks by the experts. Retrieved from Machine Learning Mastery: https://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/

5. A model for sentiment analysis based on ontology and cases

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3