Towards an Embedding-Based Approach for the Geolocation of Texts and Users on Social Networks

Author:

Hasni Sarra1

Affiliation:

1. LTSIRS Laboratory, National Engineering School, Tunis, Tunisia

Abstract

The geolocation task of textual data shared on social networks like Twitter attracts a progressive attention. Since those data are supported by advanced geographic information systems for multipurpose spatial analysis, new trends to extend the paradigm of geolocated data become more emergent. Differently from statistical language models that are widely adopted in prior works, the authors propose a new approach that is adopted to the geolocation of both tweets and users through the application of embedding models. The authors boost the geolocation strategy with a sequential modelling using recurrent neural networks to delimit the importance of words in tweets with respect to contextual information. They evaluate the power of this strategy in order to determine locations of unstructured texts that reflect unlimited user's writing styles. Especially, the authors demonstrate that semantic proprieties and word forms can be effective to geolocate texts without specifying local words or topics' descriptions per region.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3