Optimization of a Solar-powered Irrigation System

Author:

Abstract

Optimization is now a crucial element in industrial applications involving sustainable alternative energy systems. During the design of such systems, the engineer/decision maker would often encounter noise factors when their system interacts with the environment (e.g., solar insolation and ambient temperature fluctuations). In this chapter, the sizing and design optimization of the solar powered irrigation system is considered. This problem is multivariate, noisy, nonlinear, and multiobjective (MO). This chapter is divided into two parts where two situations are considered during the optimization of the solar powered irrigation system. Part 1 is the MO design optimization of the mentioned system under constant weather conditions. Part 2 involves optimizing a more general form of the design problem by accounting for varying weather conditions, insolation, and ambient temperature. The details of the optimization procedures of the two cases are presented and discussed in this chapter.

Publisher

IGI Global

Reference73 articles.

1. Usage of photovoltaics in an automated irrigation system

2. Bacterial Foraging Optimization Algorithm For Neural Network Learning Enhancement;I. A. A.Al-Hadi;International Journal of Innovative Computing,2011

3. A PSO-optimized type-2 fuzzy logic controller for navigation of multiple mobile robots

4. Pitch Control of Wind Turbines Using IT2FL Controller versus T1FL Controller;B.Bahraminejad;International Journal Of Renewable Energy Research,2014

5. SMS-EMOA: Multiobjective selection based on dominated hypervolume

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3