Image Classification Techniques

Author:

Vocaturo Eugenio1ORCID

Affiliation:

1. Università della Calabria, Italy

Abstract

The image processing task, aimed at interpreting and classifying the contents of the images, has attracted the attention of researchers since the early days of computers. With the advancement of computing system technology, image categorization has found increasingly broader applications, covering new generation disciplines such as image analysis, object recognition, and computer vision, with applications quite general both in scientific and humanistic fields. The automatic recognition, description, and classification of the structures contained in the images are of fundamental importance in a vast set of scientific and engineering fields that require the acquisition, processing, and transmission of information in visual form. Classification tasks also include those related to the categorization of images, such as the construction of a recognition system, the representation of patterns, the selection and extraction of features, and the definition of automatic recognition methods. Image analysis is of collective interest and it is a hot topics of current research.

Publisher

IGI Global

Reference46 articles.

1. Multiple Instance Learning Algorithm for Medical Image Classification.;A.Astorino,2019

2. Melanoma Detection by Means of Multiple Instance Learning

3. Learning Deep Architectures for AI

4. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transfer Learning-Based Flower Image Classification: Leveraging The Pre-Trained Alexnet Model;2023 4th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC);2023-08-18

2. Machine Learning Techniques on X-ray Images for Covid-19 Classification;2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT);2022-11

3. Iterative Semi-Supervised Learning Using Softmax Probability;Computers, Materials & Continua;2022

4. Convolutional Neural Network Techniques on X-ray Images for Covid-19 Classification;2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2021-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3