ECG Image Classification Using Deep Learning Approach

Author:

Kanani Pratik1ORCID,Padole Mamta Chandraprakash2ORCID

Affiliation:

1. Dwarkadas J. Sanghvi College of Engineering, India

2. The Maharaja Sayajirao University of Baroda, India

Abstract

Cardiovascular diseases are a major cause of death worldwide. Cardiologists detect arrhythmias (i.e., abnormal heart beat) with the help of an ECG graph, which serves as an important tool to recognize and detect any erratic heart activity along with important insights like skipping a beat, a flutter in a wave, and a fast beat. The proposed methodology does ECG arrhythmias classification by CNN, trained on grayscale images of R-R interval of ECG signals. Outputs are strictly in the terms of a label that classify the beat as normal or abnormal with which abnormality. For training purpose, around one lakh ECG signals are plotted for different categories, and out of these signal images, noisy signal images are removed, then deep learning model is trained. An image-based classification is done which makes the ECG arrhythmia system independent of recording device types and sampling frequency. A novel idea is proposed that helps cardiologists worldwide, although a lot of improvements can be done which would foster a “wearable ECG Arrhythmia Detection device” and can be used by a common man.

Publisher

IGI Global

Reference29 articles.

1. Activation functions in Neural Networks. (n.d.). https://www.geeksforgeeks.org/activation-functions-neural-networks/

2. Detection of ECG arrhythmia using Zhao-Atlas Mark time-frequency distribution

3. Electrocardiogram Feature Extraction and Pattern Recognition Using a Novel Windowing Algorithm

4. Survey on the Methods for Detecting Arrhythmias Using Heart Rate Signals;S.Celin;Journal of Pharmaceutical Sciences and Research.,2017

5. Comparison of non-linear activation functions for deep neural networks on MNIST classification task. (n.d.). https://arxiv.org/pdf/1804.02763.pdf

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3