Heuristic Approach Performances for Artificial Neural Networks Training

Author:

Çevik Kerim Kürşat1ORCID

Affiliation:

1. Akdeniz University, Turkey

Abstract

This chapter aimed to evaluate heuristic approach performances for artificial neural networks (ANN) training. For this purpose, software that can perform ANN training application was developed using four different algorithms. First of all, training system was developed via back propagation (BP) algorithm, which is the most commonly used method for ANN training in the literature. Then, in order to compare the performance of this method with the heuristic methods, software that performs ANN training with genetic algorithm (GA), particle swarm optimization (PSO), and artificial immunity (AI) methods were designed. These designed software programs were tested on the breast cancer dataset taken from UCI (University of California, Irvine) database. When the test results were evaluated, it was seen that the most important difference between heuristic algorithms and BP algorithm occurred during the training period. When the training-test durations and performance rates were examined, the optimal algorithm for ANN training was determined as GA.

Publisher

IGI Global

Reference53 articles.

1. Aksakal, B. (2014). Solving vehicle routing problem with time windows and spesific demands of a company by using genetic algorithm (Msc). Istanbul Technical University, İstanbul.

2. Interface Design for Prediction and Classification Problems with Artificial Neural Networks.;A.Arı;Acta INFOLOGICA,2017

3. A Novel Particle Swarm-based Fuzzy Control Scheme

4. Design of a visual interface for ANN based systems.;R.Bayindir;Pamukkale University Journal of Engineering Sciences,2008

5. Bentley, P. (1999). An introduction to evolutionary design by computers. Evolutionary Design by Computers, 1-73.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3