An Improved Cross-Domain Sentiment Analysis Based on a Semi-Supervised Convolutional Neural Network

Author:

Lee Lap-Kei1,Chui Kwok Tai1,Wang Jingjing1,Fung Yin-Chun1,Tan Zhanhui1

Affiliation:

1. Hong Kong Metropolitan University, Hong Kong

Abstract

The dependence on Internet in our daily life is ever-growing, which provides opportunity to discover valuable and subjective information using advanced techniques such as natural language processing and artificial intelligence. In this chapter, the research focus is a convolutional neural network for three-class (positive, neutral, and negative) cross-domain sentiment analysis. The model is enhanced in two-fold. First, a similarity label method facilitates the management between the source and target domains to generate more labelled data. Second, term frequency-inverse document frequency (TF-IDF) and latent semantic indexing (LSI) are employed to compute the similarity between source and target domains. Performance evaluation is conducted using three datasets, beauty reviews, toys reviews, and phone reviews. The proposed method enhances the accuracy by 4.3-7.6% and reduces the training time by 50%. The limitations of the research work have been discussed, which serve as the rationales of future research directions.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Rumors Transformed from Hong Kong Copypasta;Lecture Notes in Networks and Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3