Affiliation:
1. Hong Kong Metropolitan University, Hong Kong
Abstract
The dependence on Internet in our daily life is ever-growing, which provides opportunity to discover valuable and subjective information using advanced techniques such as natural language processing and artificial intelligence. In this chapter, the research focus is a convolutional neural network for three-class (positive, neutral, and negative) cross-domain sentiment analysis. The model is enhanced in two-fold. First, a similarity label method facilitates the management between the source and target domains to generate more labelled data. Second, term frequency-inverse document frequency (TF-IDF) and latent semantic indexing (LSI) are employed to compute the similarity between source and target domains. Performance evaluation is conducted using three datasets, beauty reviews, toys reviews, and phone reviews. The proposed method enhances the accuracy by 4.3-7.6% and reduces the training time by 50%. The limitations of the research work have been discussed, which serve as the rationales of future research directions.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献