Biomedical Text Summarization Based on the Itemset Mining Approach

Author:

Gupta Supriya1,Sharaff Aakanksha1,Nagwani Naresh Kumar1

Affiliation:

1. National Institute of Technology, Raipur, India

Abstract

The expanding amount of text-based biomedical information has prompted mining valuable or intriguing frequent patterns (words/terms) from extremely massive content, which is still a very challenging task. In the chapter, the authors have conceived a practical methodology for text mining dependent on the frequent item sets. This chapter presents a strategy utilizing item set mining graph-based summarization for summing up biomedical literature. They address the difficulties of recognizing important subjects or concepts in the given biomedical document text and display the relations between the strings by choosing the high pertinent lines from biomedical literature using apriori itemset mining algorithm. This method utilizes essential criteria to distinguish the significant concepts, events, for example, the fundamental subjects of the input record. These sentences are determined as exceptionally educational, applicable, and chosen to create the final summary.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3