Airbnb (Air Bed and Breakfast) Listing Analysis Through Machine Learning Techniques

Author:

Li Xiang1,Liao Jingxi2,Gao Tianchuan3

Affiliation:

1. Cornell University, USA

2. University of Central Florida, USA

3. Columbia University, USA

Abstract

Machine learning is a broad field that contains multiple fields of discipline including mathematics, computer science, and data science. Some of the concepts, like deep neural networks, can be complicated and difficult to explain in several words. This chapter focuses on essential methods like classification from supervised learning, clustering, and dimensionality reduction that can be easily interpreted and explained in an acceptable way for beginners. In this chapter, data for Airbnb (Air Bed and Breakfast) listings in London are used as the source data to study the effect of each machine learning technique. By using the K-means clustering, principal component analysis (PCA), random forest, and other methods to help build classification models from the features, it is able to predict the classification results and provide some performance measurements to test the model.

Publisher

IGI Global

Reference15 articles.

1. Bivens, J. (2019, January 30). The economic costs and benefits of Airbnb. Retrieved from Economic Policy Institute: https://www.epi.org/publication/the-economic-costs-and-benefits-of-airbnb-no-reason-for-local-policymakers-to-let-airbnb-bypass-tax-or-regulatory-obligations/

2. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth & Brooks/Cole Advanced Books & Software.

3. Dabbura, I. (2018, September 17). K-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks. Retrieved from towards (data science): https://towardsdatascience.com/K-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a

4. Das, V. K. (2020, October 11). K-means clustering vs hierarchical clustering. Retrieved from Global Tech Council: https://www.globaltechcouncil.org/clustering/K-means-clustering-vs-hierarchical-clustering/

5. Deane, S. (2021, January 26). 2021 Airbnb Statistics: Usage, demographics, and revenue growth. Retrieved from STRATOS (Jet Charters, Inc.): https://www.stratosjets.com/blog/airbnb-statistics/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3