Segmentation and Edge Extraction of Grayscale Images Using Firefly and Artificial Bee Colony Algorithms

Author:

Giuliani Donatella1

Affiliation:

1. University of Bologna, Italy

Abstract

This chapter proposes an unsupervised grayscale image segmentation method based on the Firefly and Artificial Bee Colony algorithms. The Firefly Algorithm is applied in a histogram-based research of cluster centroids to determine the number of clusters and the gray levels, successively used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The coefficients of the linear super-position of Gaussians can be thought of as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities are evaluated and their maxima are used to assign each pixel to clusters. Subsequently, region spatial information is extracted to form homogeneous regions through ABC algorithm. Initially, scout bees are moving on the search space describing random paths, with food sources given by the detected homogeneous regions. Then onlooker bees rush to scouts' aid proportionally to unclassified pixels enclosed into the bounded boxes of the discovered regions.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3