Microgrid-Based Sustainable E-Bike Charging Station

Author:

Bhatti Ghanishtha1,R. Raja Singh2

Affiliation:

1. Department of Electrical and Electronics Engineering, Vellore Institute of Technology, Vellore, India

2. Department of Energy and Power Electronics, Vellore Institute of Technology, Vellore, India

Abstract

This chapter focuses on developing a sustainable architecture for public electric motorbike charging stations. Electric motorbikes or electric bicycles (both referred to as e-bikes) are compact electric vehicles which are primarily battery-powered and driven solely by electric motors. This work conceptualizes a microgrid architecture which utilizes the integration of distributed generation energy resources providing the charging station nodes with sustainable power and increased fault tolerance. The charging stations proposed in the study increase the long-time energy savings of the infrastructure maintenance authorities while also reducing reliance on the public grid during peak hours. The photovoltaic-based DC microgrid is integrated with e-bike charging infrastructure, moving towards a future of eco-friendly and power-efficient technology.

Publisher

IGI Global

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating Renewable Energy and Electric Vehicle Systems into Power Grid: Benefits and Challenges;2021 Innovations in Power and Advanced Computing Technologies (i-PACT);2021-11-27

2. Optimization for Electric Vehicle Charging Station using Homer Grid;2021 Innovations in Power and Advanced Computing Technologies (i-PACT);2021-11-27

3. GUI based Power Factor and Harmonics Computation for Microgrid Central Controller;2021 Innovations in Power and Advanced Computing Technologies (i-PACT);2021-11-27

4. GUI Energy Demand Forecast using LSTM Deep Learning Model in Python Platform;2021 Innovations in Power and Advanced Computing Technologies (i-PACT);2021-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3