Challenges in Big Data Analysis

Author:

Govindarajan M.1

Affiliation:

1. Annamalai University, India

Abstract

Big data brings new opportunities to modern society and challenges to data scientists. On one hand, big data holds great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of big data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. Prior to data analysis, data must be well constructed. However, considering the variety of datasets in big data, the efficient representation, access, and analysis of unstructured or semi-structured data are still challenging. Understanding the method by which data can be preprocessed is important to improve data quality and the analysis results. The purpose of this chapter is to highlight the big data challenges and also provide a brief description of each challenge.

Publisher

IGI Global

Reference21 articles.

1. Bhosale & Gadekar. (2014). A review paper on Big Data and Hadoop.International Journal of Scientific and Research Publications, 4(10), 1–7.

2. Computational Intelligence for Big Data Analysis

3. A Survey on Big Data Analytics: Challenges, Open Research Issues and Tools.;D. P.Acharjya;International Journal of Advanced Computer Science and Applications,2016

4. Akhil, Shravya, & Uma. (2017). Survey on the Challenges And Issues On Big Data Analytics. International Journal of Mechanical Engineering and Technology, 8(12), 138–149.

5. On Clusterization of big data Streams.;S.Berkovich;3rd International Conference on Computing for Geospatial Research and Applications,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3