Improving Water Efficiency in the Beverage Industry With the Internet of Things

Author:

Jagtap Sandeep1ORCID,Skouteris George2,Choudhari Vilendra3,Rahimifard Shahin4

Affiliation:

1. Cranfield University, UK

2. Helmholtz-Zentrum Dresden-Rossendorf, Germany

3. Jubilant FoodWorks Limited, India

4. Loughborough University, UK

Abstract

The food and beverage industry is one of the most water-intensive industries, with water required for various processes (e.g., washing, cooking, cleaning) at almost every stage of the production, as well as being a key constituent in many food and drink products. Therefore, a real-time efficient water management strategy is imperative, and the novel internet of things (IoT)-based technologies can be of significant help in developing it. This chapter presents the architecture of an IoT-based water-monitoring system followed by the demonstration of a case study of a beverage factory wherein the monitoring system helped understand the detailed water usage as well as finding solutions and addressing overconsumption of water during the manufacturing processes. The successful deployment of IoT helped reduce the annual water consumption by 6.7%, monitor water usage in real-time, and improve it.

Publisher

IGI Global

Reference15 articles.

1. Beverage Industry Environmental Roundtable. (2011, December). A Practical Perspective on Water Accounting in the Beverage Sector. Retrieved from Water footprint: https://www.waterfootprint.org/media/downloads/BIER-2011-WaterAccountingSectorPerspective.pdf

2. Bromley-Challenor, K., Kowalski, M., Barnard, R., & Lynn, S. (2013). Water use in the UK food and drink industry - A review of water use in the food and drink industry in 2007 and 2010, by sub-sector and UK nations. Banbury: WRAP.

3. A discussion paper on challenges and limitations to water reuse and hygiene in the food industry

4. Jagtap, S. (2019). Utilising the internet of things concepts to improve the resource efficiency of food manufacturing (Doctoral dissertation). Loughborough University.

5. Food Logistics 4.0: Opportunities and Challenges

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3