Navigation Path Detection for Cotton Field Operator Robot Based on Horizontal Spline Segmentation

Author:

Li Dongchen1,Xu Shengyong1,Zheng Yuezhi1,Qi Changgui1,Yao Pengjiao1

Affiliation:

1. Huazhong Agricultural University, China

Abstract

Visual navigation is one of the fundamental techniques of intelligent cotton-picking robot. Cotton field composition is complex and the presence of occlusion and illumination makes it hard to accurately identify furrows so as to extract the navigation line. In this paper, a new field navigation path extraction method based on horizontal spline segmentation is presented. Firstly, the color image in RGB color space is pre-processed by the OTSU threshold algorithm to segment the binary image of the furrow. The cotton field image components are divided into four categories: furrow (ingredients include land, wilted leaves, etc.), cotton fiber, other organs of cotton and the outside area or obstructions. By using the significant differences in hue and value of the HSV model, the authors segment the threshold by two steps. Firstly, they segment cotton wool in the S channel, and then segment the furrow in the V channel in the area outside the cotton wool area. In addition, morphological processing is needed to filter out small noise area. Secondly, the horizontal spline is used to segment the binary image. The authors detect the connected domains in the horizontal splines, and merger the isolate small areas caused by the cotton wool or light spots in the nearby big connected domains so as to get connected domain of the furrow. Thirdly, they make the center of the bottom of the image as the starting point, and successively select the candidate point from the midpoint of the connected domain, according to the principle that the distance between adjacent navigation line candidate is smaller. Finally, the authors count the number of the connected domains and calculate the change of parameters of boundary line of the connected domain to make sure whether the robot reaches the outside of the field or encounters obstacles. If there is no anomaly, the navigation path is fitted by the navigation points using the least squares method. Experiments prove that this method is accurate and effective, which is suitable for visual navigation in the complex environment of a cotton field in different phases.

Publisher

IGI Global

Reference21 articles.

1. Machine Vision-based Guidance System for Agricultural Grain Harvesters using Cut-edge Detection

2. Current Situation of Navigation Technologies for Agricultural Machinery;J.Changying;Transactions of the Chinese Society for Agricultural Machinery,2014

3. Walking goal line detection based on improved Hough transform on harvesting robot;W.Gang;Transactions of the Chinese Society for Agricultural Machinery,2010

4. Parametric Model of the Perspective Projection of a Road with Applications to Lane Keeping and 3D Road Reconstruction

5. Image Detection Method of NavigationRoute of Cotton Plastic Film Mulch Planter;L.Jingbin;Journal of Chinese Agricultural Mechanization,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3