Affiliation:
1. C. V. Raman College of Engineering, India
Abstract
Diabetes has affected over 246 million people worldwide and by 2025 it is expected to rise to over 380 million. With the rise of information technology and its continued advent into the medical and healthcare sector, different symptoms of diabetes are being documented. The techniques inspired from the distributed collective behavior of social colonies have shown worth and excellence in dealing with complex optimization problems and are becoming more popular nowadays. It can be used as an effective problem solving tool for identifying diabetes disease risks. This paper aims at finding solutions to diagnose the disease by analyzing the patterns found in data through various swarm optimization techniques by employing Support Vector Machines and Naïve Bayes algorithms. It proposes a quicker and more efficient technique of diagnosing the disease, leading to timely treatment of the patients.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Navigating the Swarm;Advances in Computational Intelligence and Robotics;2024-02-23
2. Harmony in Motion;Advances in Computational Intelligence and Robotics;2024-02-23
3. Swarm Intelligence and Evolutionary Algorithms in Processing Healthcare Data;Connected e-Health;2022