Abstract
Real-world data is often nonlinear, discontinuous, and may comprise high frequency, multi-polynomial components. Not surprisingly, it is hard to find the best models for modeling such data. Classical neural network models are unable to automatically determine the optimum model and appropriate order for data approximation. In order to solve this problem, neuron-adaptive higher order neural network (NAHONN) models have been introduced. Definitions of one-dimensional, two-dimensional, and n-dimensional NAHONN models are studied. Specialized NAHONN models are also described. NAHONN models are shown to be “open box.” These models are further shown to be capable of automatically finding not only the optimum model but also the appropriate order for high frequency, multi-polynomial, discontinuous data. Rainfall estimation experimental results confirm model convergence. The authors further demonstrate that NAHONN models are capable of modeling satellite data.