Music Emotions Recognition by Machine Learning With Cognitive Classification Methodologies

Author:

Bai Junjie1,Luo Kan2,Peng Jun3,Shi Jinliang3,Wu Ying3,Feng Lixiao1,Li Jianqing4,Wang Yingxu5

Affiliation:

1. School of Electrical and Information Engineering, Chongqing University of Science and Technology, Chongqing, China & Schulich School of Engineering and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada

2. School of Information Science and Engineering, Fujian University of Technology, Fuzhou, China

3. School of Electrical and Information Engineering, Chongqing University of Science and Technology, Chongqing, China

4. School of Instrument Science and Engineering, Southeast University, Nanjing, China

5. International Institute of Cognitive Informatics and Cognitive Computing (ICIC), Laboratory for Computational Intelligence, Denotational Mathematics, and Software Science, Department of Electrical and Computer Engineering, Schulich School of Engineering and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada & Information Systems Lab, Stanford University, Stanford, USA

Abstract

Music emotions recognition (MER) is a challenging field of studies addressed in multiple disciplines such as musicology, cognitive science, physiology, psychology, arts and affective computing. In this article, music emotions are classified into four types known as those of pleasing, angry, sad and relaxing. MER is formulated as a classification problem in cognitive computing where 548 dimensions of music features are extracted and modeled. A set of classifications and machine learning algorithms are explored and comparatively studied for MER, which includes Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Neuro-Fuzzy Networks Classification (NFNC), Fuzzy KNN (FKNN), Bayes classifier and Linear Discriminant Analysis (LDA). Experimental results show that the SVM, FKNN and LDA algorithms are the most effective methodologies that obtain more than 80% accuracy for MER.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3