Quantitative Semantic Analysis and Comprehension by Cognitive Machine Learning

Author:

Wang Yingxu1,Valipour Mehrdad1,Zatarain Omar A.1

Affiliation:

1. International Institute of Cognitive Informatics and Cognitive Computing (ICIC), Laboratory for Computational Intelligence, Cognitive Systems, Software Science, and Denotational Mathematics, Department of Electrical and Computer Engineering, Schulich School of Engineering and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada

Abstract

Knowledge learning is the sixth and the most fundamental category of machine learning mimicking the brain. It is recognized that the semantic space of machine knowledge is a hierarchical concept network (HCN), which can be rigorously represented by formal concepts in concept algebra and semantic algebra. This paper presents theories and algorithms of hierarchical concept classification by quantitative semantic analysis based on machine learning. Semantic equivalence between formal concepts is rigorously measured by an Algorithm of Concept Equivalence Analysis (ACEA). The semantic hierarchy among formal concepts is quantitatively determined by an Algorithm of Relational Semantic Classification (ARSC). Experiments applying Algorithms ACEA and ARSC on a set of formal concepts have been successfully conducted, which demonstrate a deep machine understanding of formal concepts and quantitative relations in the hierarchical semantic space by machine learning beyond human empirical perspectives.

Publisher

IGI Global

Reference36 articles.

1. Concepts and Fuzzy Logic

2. Three models for the description of language

3. Chomsky, N. (2007). Approaching UG from below. Interfaces + Recursion = Language? In Chomsky’s Minimalism and the View from Syntax-Semantics. Berlin: Mouton.

4. Language and Cognition

5. Havasi, C., Speer, R., & Alonso, J. (2007). ConceptNet 3: a flexible, multilingual semantic network for common sense knowledge. In RANLP. Borovets.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3