AI and Statistical Technologies for Manufacturing and Maintenance Strategies Improvement

Author:

Del Río Susana Ferrerio1,Fernández Santiago1,Bravo-Imaz Iñaki1,Konde Egoitz1,Irigaray Aitor Arnaiz1

Affiliation:

1. IK4-Tekniker, Spain

Abstract

The development and the implementation of advanced actuation systems has increased in recent years, as many factors are driving the migration from hydraulic actuators to electromechanical actuators (EMAs) in aeronautics. But not only do we have to consider the right design to customize the system from the requirements oriented to the final application, also additional functions that can provide the system with additional value, to make it more competitive in this market. This is the case of the Health Monitoring (HM) systems. The development, implementation and integration of predictive algorithms into the environment of the EMA provide the system with an additional functionality, from which it is possible to detect failures at an early stage in order to avoid catastrophic accidents and improve maintenance activities. This work shows how to develop HM algorithms based on AI and Statistical technologies to detect and predict early stages of failure in a gearbox, which can directly affect to the transmission of power in EMAs.

Publisher

IGI Global

Reference19 articles.

1. Al-Atat, H., Siegel, D., & Lee, J. (2011). A Systematic Methodology for Gearbox Health Assessment and Fault Classification. International Journal of Prognostics and Health Management.

2. Bechhoefer, E., & He, D. (2012). A Process for Data Driven Prognostics. Proceedings of MFPT 2012 Conference.

3. The synchronous (time domain) average revisited

4. A Technical Framework and Roadmap of Embedded Diagnostics and Prognostics for Complex Mechanical Systems in Prognostics and Health Management Systems

5. Cuc, A. I. (2002). Vibration-Based Techniques for Damage Detection and Health Monitoring of Mechanical Systems. University of South Carolina.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3