Machine Learning Approach for Multi-Layered Detection of Chemical Named Entities in Text

Author:

Biradar Usha B.1ORCID,Gurulingappa Harsha1,Khamari Lokanath1,Giriyan Shashikala1

Affiliation:

1. Molecular Connections Pvt Ltd., Bangalore, India

Abstract

Identification of chemical named entities in text and subsequent linkage of information to biological events is of immense value to fulfill the knowledge needs of pharmaceutical and chemical R&D. A significant amount of investigation has been carried out since a decade for identifying chemical named entities at morphological level. However, a barrier still remains in terms of value proposition to scientists at chemistry level. Therefore, the work described here aims to circumvent the information barrier by adaptation of a Conditional Random Fields-based approach for identifying chemical named entities at various levels namely generic chemical level, morphological level, and chemistry level. Substantial effort has been invested on generation of suitable multi-level annotated corpora. Recommended machine learning practices such as active learning-based training corpus generation and feature optimization have been systematically performed. Evaluation of system performance and benchmarking against the other state-of-the-approaches showed improved results.

Publisher

IGI Global

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3