Quantum-Behaved Particle Swarm Optimization Based Radial Basis Function Network for Classification of Clinical Datasets

Author:

Leema N.1,Nehemiah H. Khanna1,Kannan A.1

Affiliation:

1. College of Engineering Guindy, Anna University, Chennai, India

Abstract

In this article, a classification framework that uses quantum-behaved particle swarm optimization neural network (QPSONN) classifiers for diagnosing a disease is discussed. The neural network used for classification is radial basis function neural network (RBFNN). For training the RBFNN K-means clustering algorithm and quantum-behaved particle swarm optimization (QPSO) algorithm has been used. The K-means clustering algorithm is used to find the optimal number of clusters which determines the number of neurons in the hidden layer. The cluster approximation error is used to find the optimal clusters. The weights between the hidden and the output layer is determined using QPSO algorithm based on the mean squared error (MSE). The performance of the developed classifier model has been tested with five clinical datasets, namely Pima Indian Diabetes, Hepatitis, Bupa Liver Disease, Wisconsin Breast Cancer and Cleveland Heart Disease were obtained from the University of California, Irvine (UCI) machine learning repository.

Publisher

IGI Global

Reference52 articles.

1. A Memetic Pareto Evolutionary Approach to Artificial Neural Networks

2. Learning to Use a Learned Model: A Two-Stage Approach to Classification

3. Growing compact RBF networks using a genetic algorithm

4. Breast cancer diagnosis using Genetically Optimized Neural Network model

5. Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Department of Information and computer science, CA: University of California, Irvine. Retrieved December 10, 2014, from http://www.ics.uci.edu/~mlearn/MLRepository

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3