Forecasting Sales and Return Products for Retail Corporations and Bridging Among Them

Author:

Chowdhury Md Mushfique Hasnat1,Amin Saman Hassanzadeh1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Ryerson University, Canada

Abstract

The purpose of this study is to show how we can bridge sales and return forecasts for every product of a retail store by using the best model among several forecasting models. Managers can utilize this information to improve customer's satisfaction, inventory management, or re-define policy for after sales support for specific products. The authors investigate multi-product sales and return forecasting by choosing the best forecasting model. To this aim, some machine learning algorithms including ARIMA, Holt-Winters, STLF, bagged model, Timetk, and Prophet are utilized. For every product, the best forecasting model is chosen after comparing these models to generate sales and return forecasts. This information is used to classify every product as “profitable,” “risky,” and “neutral,” The experiment has shown that 3% of the total products have been identified as “risky” items for the future. Managers can utilize this information to make some crucial decisions.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3