Affiliation:
1. Savitribai Phule Pune University, India
2. Vellore Institute of Technology, Vellore, India
Abstract
This chapter gives an effective and efficient technique that can detect epilepsy in real time. It is low cost, low power, and real-time devices that can easily detect epilepsy. Along with EEG device, one can upgrade with GSM module to alert the doctors and parents of patients about its occurrence to prevent a sudden fall, which may cause injury and death. The accuracy of this EEG device depends on the quality of feature extraction technique and classification algorithm. In this chapter, support vector machine (SVM) is used as a classifier. Wavelet transform gives feature extraction, which helps to train data and to detect normal or seizure patients. Discrete wavelet transform (DWT) decomposes the signals into three decomposition levels. In this detection, mean, median, and non-linear parameter entropy were calculated for every sub-band as key parameters. The extracted features are then applied to SVM classifier for the classification. Better accuracy of classification is obtained using wavelet and SVM classifier.