Identification of High Risk and Low Risk Preterm Neonates in NICU

Author:

Tejaswini S.1,Sriraam N.2ORCID,Pradeep G. C. M. 3

Affiliation:

1. M. S. Ramaiah Institute of Technology, India

2. M.S. Ramaiah Institute of Technology, India

3. M. S. Ramaiah Medical College and Hospital, India

Abstract

Infant cries are referred as the biological indicator where infant distress is expressed without any external stimulus. One can assess the physiological changes through cry characteristics that help in improving clinical decision. In a typical Neonatal Intensive Care Unit (NICU), recognizing high-risk and low-risk admitted preterm neonates is quite challenging and complex in nature. This chapter attempts to develop pattern recognition-based approach to identify high-risk and low-risk preterm neonates in NICU. Four clinical conditions were considered: two Low Risk (LR) and two High Risk (HR), LR1- Appropriate Gestational Age (AGA), LR2- Intrauterine Growth Restriction (IUGR), HR1-Respiratory Distress Syndrome (RDS), and HR2- Premature Rupture of Membranes (PROM). An overall cry unit of 800 (n=20 per condition) was used for the proposed study. After appropriate pre-processing, Bark Frequency Cepstral Coefficient (BFCC) was estimated using three methods. Schroeder, Zwicker and Terhardt; and Transmiller; and a non-linear Support Vector Machine (SVM) Classifier were employed to discriminate low-risk and high-risk groups. From the simulation results, it was observed that sensitivity specificity and accuracy of 91.47%, 91.42%, and 92.9% respectively were obtained using the BFCC estimated for classifying high risk and low risk with SVM classification.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3