Multi-Objective Optimization of Abrasive Waterjet Machining Process Parameters Using Particle Swarm Technique

Author:

Murugabalaji V.1,Kanthababu M.1,Jegaraj J.2,Saikumar S.2

Affiliation:

1. Department of Manufacturing Engineering, Anna University, Chennai, India

2. Defence Research and Development Laboratory, Kanchanbagh, Hyderabad, India

Abstract

Multi-objective optimization is carried out for the first time to optimize abrasive water jet machining (AWJM) process parameters for graphite. Experiments are carried out by Response Surface Methodology (RSM) using Box-Behnken method. The input process parameters considered are pressure (P), traverse rate (TR) and mesh size (MS). Results are analyzed using Analysis of Variance (ANOVA) and response surface considering individually output parameters such as depth of cut (DOC) and surface roughness (Ra). ANOVA and response surface analyses indicated that similar combinations of AWJM process parameters such as high pressure (176 MPa), medium mesh size (# 100) and low traverse rate (1000 mm/min) resulted in higher depth of cut as well as lower Ra. Therefore, in order to verify the above combinations and to improve productivity, multi-objective optimization is carried out using Particle Swarm Optimization (PSO) to achieve higher depth of cut and low Ra together. From the PSO analysis, it is observed that pressure of 154 MPa, traverse rate of 1877 mm/min and mesh size of # 100 result in high depth of cut and low Ra together. The result obtained from the PSO is compared with that of ANOVA. The outcome of this study will be useful to the manufacturing engineers for selecting appropriate input AWJM process parameters for machining graphite, which has various applications such as aerospace, defence, etc.

Publisher

IGI Global

Reference25 articles.

1. Chithirai Pon Selvan, M., & Mohana Sundara Raju, N. (2011). Assessment of Process Parameters in Abrasive Water jet Cutting of Granite. International Conference on Trends in Mechanical and Industrial Engineering (ICTMIE'2011) Bangkok.

2. Conner, I., Hashish, M., & Ramulu, M. (2003). Abrasive water jet machining of aerospace structural sheet and thin plate materials. WJTA American Water jet Conference, August 17-19, Houston, Texas.

3. A new optimizer using particle swarm theory

4. Farhad Kolahan and Hamid Khajavi, A. (2011). Modeling and Optimization of Abrasive Water jet Parameters using Regression Analysis. International Journal of Aerospace and Mechanical Engineering.

5. Gaitonde, V. N., & Karnik, S. R and Paulo Davim, J. (2012). Application of particle swarm optimization for achieving desired surface roughness in Tungsten-Copper Alloy Machining. Computational Methods for Optimizing Manufacturing Technology: Models and Techniques, Engineering Science Reference, USA.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3