Affiliation:
1. ISIMS, Sakiet Ezzit, Tunisia
2. University of Sfax. ISIMS, Sakiet Ezzit, Tunisia
Abstract
Big Data emerged after a big explosion of data from the Web 2.0, digital sensors, and social media applications such as Facebook, Twitter, etc. In this constant growth of data, many domains are influenced, especially the decisional support system domain, where the integration of processes should be adapted to support this huge amount of data to improve analysis goals. The basic purpose of this research article is to adapt extract-transform-load processes with Big Data technologies, in order to support not only this evolution of data but also the knowledge discovery. In this article, a new approach called Big Dimensional ETL (BigDimETL) is suggested to deal with ETL basic operations and take into account the multidimensional structure. In order to accelerate data handling, the MapReduce paradigm is used to enhance data warehousing capabilities and HBase as a distributed storage mechanism. Experimental results confirm that the ETL operation performs well especially with adapted operations.
Subject
Information Systems and Management,Computer Science Applications
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献