Exploring Big Data Opportunities for Online Customer Segmentation

Author:

Fotaki Georgia1,Spruit Marco1,Brinkkemper Sjaak1,Meijer Dion2

Affiliation:

1. Department of Information and Computing Sciences, Utrecht University, Utrecht, Netherlands

2. GX Software, Nijmegen, Netherlands

Abstract

In today's competitive business environment, more and more organizations move or extent their business online. Thus, there is an increasing need for organizations to build concrete online marketing strategies in order to engage with their customers. One basic step towards achieving the objectives related to online marketing is the segmentation of online customers, based on the customer data gathered online. Since there is an onslaught of customer information collected from online sources, new techniques are required for managing and analyzing the huge amount of data, and this is where the concept of Big Data can play an essential role. This research sheds light on three fields: Online Marketing, Customer Segmentation, and Big Data Analytics. The three domains are integrated into the Online Customer Segmentation (OCS) framework, which attempts to show how online marketing objectives can be supported by techniques and tools applicable to extremely large datasets. For the creation of the OCS framework a set of main online marketing objectives is defined. Moreover, the differences among customer attributes gathered from offline and online channels are discussed and OCS categories are identified. Finally, the concept of Big Data is introduced and relevant techniques and tools suitable for analyzing customer segmentation categories and segmenting customers effectively are described. This work demonstrates the OCS framework by applying it on a hypothetical business scenario using an online customer data set.

Publisher

IGI Global

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,Management Information Systems

Reference41 articles.

1. Chaffey, D., & Smith, P. R. (2008). eMarketing eXcellence: Planning and optimizing your digital marketing. Oxford: Elsevier

2. Online auction customer segmentation using a neural network model.;C. C. H.Chan;International Journal of Applied Science and Engineering,2005

3. Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3