An Intelligent-Internet of Things (IoT) Outbound Logistics Knowledge Management System for Handling Temperature Sensitive Products

Author:

Yuen Joseph S.M.1,Choy K.L.1,Lam H.Y.1,Tsang Y.P.1

Affiliation:

1. The Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract

A comprehensive outbound logistics strategy of environmentally-sensitive products is essential to facilitate effective resource allocation, reliable quality control, and a high customer satisfaction in a supply chain. In this article, an intelligent knowledge management system, namely the Internet-of-Things (IoT) Outbound Logistics Knowledge Management System (IOLMS) is designed to monitor environmentally-sensitive products, and to predict the quality of goods. The system integrates IoT sensors, case-based reasoning (CBR) and fuzzy logic for real-time environmental and product monitoring, outbound logistics strategy formulation and quality change prediction, respectively. By studying the relationship between environmental factors and the quality of goods, different adjustments or strategies of outbound logistics can be developed in order to maintain high quality of goods. Through a pilot study in a high-quality headset manufacturing company, the results show that the IOLMS helps to increase operation efficiency, reduce the planning time, and enhance customer satisfaction.

Publisher

IGI Global

Subject

Artificial Intelligence,Management of Technology and Innovation,Information Systems and Management,Organizational Behavior and Human Resource Management,Strategy and Management,Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Industry 4.0: AI and IoT to Improve Supply Chain Performance;Advances in Computing Communications and Informatics;2024-03-26

2. Optimization Path and Design of Intelligent Logistics Management System Based on ROS Robot;Journal of Robotics;2023-02-07

3. Internet of Things (IoT) and the road to happiness;Digital Transformation and Society;2022-06-30

4. Wire-EDMing Parameters Investigation and Machining Cost Analysis;International Journal of Knowledge and Systems Science;2022-02-24

5. A Computer Vision-Based Model for Automatic Motion Time Study;Computers, Materials & Continua;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3