Integrating Unsupervised and Supervised ML Models for Analysis of Synthetic Data From VAE, GAN, and Clustering of Variables

Author:

Prayaga Lakshmi1ORCID,Devulapalli Krishna2,Prayaga Chandra1ORCID,Wade Aaron1ORCID,Reddy Gopi Shankar1,Pola Sri Satya Harsha1

Affiliation:

1. University of West Florida, USA

2. Indian Institute of Chemical Technology, India

Abstract

Clustering of variables is a specialized approach for dimensionality reduction. This strategy is evaluated for data reduction with a Kaggle diabetes dataset. Since the original dataset is small, Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE) are used to generate 100,000 records and tested for resemblance to the real data using standard statistical methods. VAE-data is more representative of the real data than GAN-data when analyzed using machine learning (ML) models. Applying Clustering of Variables on VAE-data yields new synthetic variables (SV). SV-data is then augmented with target variable data. Random Forest model is used on VAE and SV data. SV-data results matched VAE-data, proving the new data's quality. SV-data also provides insights into correlations and data dispersion patterns. This analysis implements a combination of Unsupervised learning (clustering of variables) and Supervised learning (classification) which is reflected in the results.

Publisher

IGI Global

Reference36 articles.

1. Ali, M. (2020). PyCaret: An open-source, low-code machine learning library in Python (Version 1.0.0) [Computer software]. https://www.pycaret.org

2. MLReal: Bridging the gap between training on synthetic data and real data applications in machine learning

3. Chavent, M., Kuentz, V., Liquet, B., & Saracco, J. (2017). ClustOfVar: Clustering of variables (R package version 1.1) [Computer software].https://CRAN.R-project.org/package=ClustOfVar

4. Can genes play a role in explaining frequent job changes? An examination of gene-environment interaction from human capital theory.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3