Affiliation:
1. Ajay Kumar Garg Engineering College Ghaziabad, India
Abstract
Sentiment analysis is the field of NLP which analyzes the sentiments of text written by users on online sites in the form of reviews. These reviews may be either in the form of a word, sentence, document, or ratings. These reviews are used as datasets when applied to train a classifier. These datasets are applied in the annotated form with the positive, negative or neutral labels as an input to train the classifier. This trained classifier is used to test other reviews, either in the same or different domains to know like or dislike of the user for the related field. Various researches have been done in single and cross domain sentiment analysis. The new methods proposed are overcoming the previous ones but according to this survey, no methods best suit the proposed work. In this article, the authors review the methods and techniques that are given by various researchers in cross domain sentiment analysis and how those are compared with the pre-existing methods for the related work.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Customer Analytics Using Sentiment Analysis and Net Promoter Score;Encyclopedia of Data Science and Machine Learning;2022-10-14
2. Comparative analysis of machine learning algorithms for Classification of US Airlines Tweets;2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2022-10-13