Application of Fireworks Algorithm in Gamma-Ray Spectrum Fitting for Radioisotope Identification

Author:

Alamaniotis Miltiadis1,Choi Chan K.2,Tsoukalas Lefteri H.2

Affiliation:

1. Nuclear Engineering Program, University of Utah, Salt Lake City, UT, USA & Applied Intelligent Systems Laboratory, School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA

2. School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA

Abstract

Identification of radioisotopic signature patterns in gamma-ray spectra is of paramount importance in various applications of gamma spectroscopy. Therefore, there are several active research efforts to develop accurate and precise methods to perform automated spectroscopic analysis and subsequently recognize gamma-ray signatures. In this work, the authors present a new method for radioisotope identification in gamma-ray spectra obtained with a low resolution radiation detector. The method fits the obtained spectrum with a linear combination of known template signature patterns. Coefficients of the linear combination are evaluated by computing the solution of a single objective optimization problem, whose objective is the Theil-1 inequality coefficient. Optimization of the problem is performed by the Fireworks Algorithm, which identifies a set of coefficients that minimize the Theil-1 value. The computed coefficients are statistically tested for being significantly different than zero or not, and if at least one is found to be zero then the Fireworks Algorithm is used to reiterate fitting using the non-zero templates. Fitting iterations are continued up to the point that no linear coefficients are found to be zero. The output of the method is a list that contains the radioisotopes that have been identified in the measured spectrum. The method is tested on a set of both simulated and real experimental gamma-ray spectra comprised of a variety of isotopes, and compared to a multiple linear regression fitting, and genetic algorithm Theil-1 based fitting. Results demonstrate the potentiality of the Fireworks Algorithm based method, expressed as higher accuracy and similar precision over the other two tested methodologies for radioisotope signature pattern identification in the framework of gamma-ray spectrum fitting.

Publisher

IGI Global

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3