Solving Graph Coloring Problem Using an Enhanced Binary Dragonfly Algorithm

Author:

Baiche Karim1,Meraihi Yassine2ORCID,Hina Manolo Dulva3ORCID,Ramdane-Cherif Amar4,Mahseur Mohammed5

Affiliation:

1. Applied Automation Laboratory, University of MHamed Bougara Boumerdes, Boumerdes, Algeria

2. Department of Automation, Applied Automation Laboratory, University of M'Hamed Bougara Boumerdes, Boumerdes, Algeria

3. ECE Paris School of Engineering, Paris, France

4. LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, Versailles, France

5. University of Sciences and Technology Houari Boumediene, Bab Ezzouar, Algeria

Abstract

The graph coloring problem (GCP) is one of the most interesting classical combinatorial optimization problems in graph theory. It is known to be an NP-Hard problem, so many heuristic algorithms have been employed to solve this problem. In this article, the authors propose a new enhanced binary dragonfly algorithm to solve the graph coloring problem. The binary dragonfly algorithm has been enhanced by introducing two modifications. First, the authors use the Gaussian distribution random selection method for choosing the right value of the inertia weight w used to update the step vector (∆X). Second, the authors adopt chaotic maps to determine the random parameters s, a, c, f, and e. The aim of these modifications is to improve the performance and the efficiency of the binary dragonfly algorithm and ensure the diversity of solutions. The authors consider the well-known DIMACS benchmark graph coloring instances to evaluate the performance of their algorithm. The simulation results reveal the effectiveness and the successfulness of the proposed algorithm in comparison with some well-known algorithms in the literature.

Publisher

IGI Global

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vertex Partitions Based Approach to Solve the Graph Colouring Problem;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

2. A Two-Phase Pattern Generation and Production Planning Procedure for the Stochastic Skiving Process;Applied Computational Intelligence and Soft Computing;2023-11-06

3. Expected polynomial-time randomized algorithm for graph coloring problem;Discrete Applied Mathematics;2023-08

4. Solution approaches for the bi-objective Skiving Stock Problem;Computers & Industrial Engineering;2023-05

5. Graph colouring using evolutionary computation: A case study of blind naked mole‐rat algorithm;Expert Systems;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3