Design Space Exploration Using Cycle Accurate Simulator

Author:

Shahid Arsalan1,Khalid Bilal1,Qadri Muhammad Yasir2,Qadri Nadia N.3,Ahmed Jameel1

Affiliation:

1. HITEC University, Pakistan

2. University of Essex, UK

3. COMSATS Institute of Information Technology, Pakistan

Abstract

Multi-Processor System on Chip (MPSoC) architectures have become a mainstream technology for obtaining performance improvements in computing platforms. With the increase in the number of cores, the role of cache memory has become pivotal. An ideal memory configuration is always desired to be fast and large; but, in fact, striking to balance between the size and access time of the memory hierarchy is considered by processor architect. Design space exploration is used for performance analysis of systems and helps to find the optimal solution for obtaining the desired objectives. In this chapter, we explore two design space parameters, i.e., cache size and number of cores, for obtaining the desired energy consumption. Moreover, previously presented energy models for multilevel cache are evaluated by using cycle accurate full system simulator. Our results show that with the increase in cache sizes, the number of cycles required for application execution decreases, and by increasing number of cores, the throughput improve.

Publisher

IGI Global

Reference34 articles.

1. Advanced RISC Machines Limited (ARM) Inc. (1996). ARM Software Development Toolkit.

2. E< MC2: less energy through multi-copy cache.;A.Chakraborty;Proceedings of the 2010 international conference on Compilers, architectures and synthesis for embedded systems,2010

3. Runtime Verification of Typical Requirements for a Space Critical SoC Platform

4. Chip makers turn to multicore processors

5. A data cache with multiple caching strategies tuned to different types of locality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3