Modified Distance Regularized Level Set Segmentation Based Analysis for Kidney Stone Detection

Author:

Viswanath K.1,Gunasundari R.1

Affiliation:

1. Pondicherry Engineering College, India

Abstract

The abnormalities of the kidney can be identified by ultrasound imaging. The kidney may have structural abnormalities like kidney swelling, change in its position and appearance. Kidney abnormality may also arise due to the formation of stones, cysts, cancerous cells, congenital anomalies, blockage of urine etc. For surgical operations it is very important to identify the exact and accurate location of stone in the kidney. The ultrasound images are of low contrast and contain speckle noise. This makes the detection of kidney abnormalities rather challenging task. Thus preprocessing of ultrasound images is carried out to remove speckle noise. In preprocessing, first image restoration is done to reduce speckle noise then it is applied to Gabor filter for smoothening. Next the resultant image is enhanced using histogram equalization. The preprocessed ultrasound image is segmented using distance regularized level set segmentation (DR-LSS), since it yields better results. It uses a two-step splitting methods to iteratively solve the DR-LSS equation, first step is iterating LSS equation, and then solving the Sign distance equation. The second step is to regularize the level set function which is the obtained from first step for better stability. The DR is included for LSS for eliminating of anti-leakages on image boundary. The DR-LSS does not require any expensive re-initialization and it is very high speed of operation. The RD-LSS results are compared with distance regularized level set evolution DRLSE1, DRLSE2 and DRLSE3. Extracted region of the kidney after segmentation is applied to Symlets (Sym12), Biorthogonal (bio3.7, bio3.9 & bio4.4) and Daubechies (Db12) lifting scheme wavelet subbands to extract energy levels. These energy level gives an indication about presence of stone in that particular location which significantly vary from that of normal energy level. These energy levels are trained by Multilayer Perceptron (MLP) and Back Propagation (BP) ANN to identify the type of stone with an accuracy of 98.6%.

Publisher

IGI Global

Reference45 articles.

1. Renal Measurements, Including Length, Parenchymal Thickness, and Medullary Pyramid Thickness, in Healthy Children: What Are the Normative Ultrasound Values?

2. Renal Measurements, Including Length, Parenchymal Thickness, and Medullary Pyramid Thickness, in Healthy Children: What Are the Normative Ultrasound Values?

3. Modified Gradient Search for Level Set Based Image Segmentation

4. Anzila Rahman, T., & Mohammad Shorif Uddin. (2013). Speckle Noise Reduction and Segmentation of Kidney Regions from Ultrasound Image, IEEE Transactions, 6(13), 978-1-4799-0400.

5. Chakraborty S. (2014), A Semi-automated System for Optic Nerve Head Segmentation in Digital Retinal Images, doi: 978-1-4799-8084-0/14, 10.1109/ICIT.2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3