Multimodal Indexing and Information Retrieval System Based on Mammographic Image Analysis

Author:

Sidhom Sahbi1,Bourkache Noureddine2,Laghrouche Mourad2

Affiliation:

1. University of Lorraine, France

2. University of Mouloud Mammeri, Algeria & LAMPA Lab., Algeria

Abstract

In this chapter, we propose a new indexing approach on medical “image scanner” databases combining the analysis process of the texture characteristics with the descriptive information. The proposed model is based on the digital image components using the characteristics vector. This vector represents the morphological processing result on image texture. It is linked to image semantic attributes using the annotations of medical professionals. Our application context is based on “Mammographic Image Analysis” (MIAS) in databases. The first aspect concerning the morphology processing on images called the “numerical signature” vector. In this approach, the texture analysis of the image is based on the Gabor Wavelets (or Filters) Theory. In offline processing for each image in MIAS databases, the Gabor Wavelets determine all numerical signatures: image characteristics as multi-index vectors. In online, the query processing by image in real-time defines the query signature (or image-query vectors) and determines all similarities by multi-index matching with images in databases. The similarities are built between the image-query and images in MIAS databases using the same Gabors' algorithms implementation. In order to evaluate the robustness of our system (based on multi-index, semantic attributes, query and information retrieval by image), we experiment with a controlled database of 320 mammographies. The efficient results show a set of successful criteria in image representations based on the Gabor's Wavelets, semantic attributes and significant ratios in the system recall and precision. The objective is to design an intelligent application to assist medical professionals in the decision-making on tumor dignosis based on mammography scanner.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3