Affiliation:
1. Le Havre Normandy University, France
Abstract
The main objective of studying decentralized supply chains is to demonstrate that a better interfirm collaboration can lead to a better overall performance of the system. Many researchers studied a phenomenon called downstream demand inference (DDI), which presents an effective demand management strategy to deal with forecast problems. DDI allows the upstream actor to infer the demand received by the downstream one without information sharing. Recent study showed that DDI is possible with simple moving average (SMA) forecast method and was verified especially for an autoregressive AR(1) demand process. This chapter extends the strategy's results by developing mean squared error and average inventory level expressions for causal invertible ARMA(p,q) demand under DDI strategy, no information sharing (NIS), and forecast information sharing (FIS) strategies. The authors analyze the sensibility of the performance metrics in respect with lead-time, SMA, and ARMA(p,q) parameters, and compare DDI results with the NIS and FIS strategies' results.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Green Supply Chain Management: A Guide;Springer Proceedings in Business and Economics;2024
2. The Implementation of the Agenda 2030 on Sustainable Development;Government Impact on Sustainable and Responsible Supply Chain Management;2023-06-30
3. Accelerating the Digitalization of the Supply Chain;Digitalization of Decentralized Supply Chains During Global Crises;2021