Centrality Metrics-Based Connected Dominating Sets for Real-World Network Graphs

Author:

Meghanathan Natarajan1,Rahman Md Atiqur1,Akhter Mahzabin1

Affiliation:

1. Jackson State University, USA

Abstract

The authors investigate the use of centrality metrics as node weights to determine connected dominating sets (CDS) for a suite of 60 real-world network graphs of diverse degree distribution. They employ centrality metrics that are neighborhood-based (degree centrality [DEG] and eigenvector centrality [EVC]), shortest path-based (betweenness centrality [BWC] and closeness centrality [CLC]) as well as the local clustering coefficient complement-based degree centrality metric (LCC'DC), which is a hybrid of the neighborhood and shortest path-based categories. The authors target for minimum CDS node size (number of nodes constituting the CDS). Though both the BWC and CLC are shortest path-based centrality metrics, they observe the BWC-based CDSs to be of the smallest node size for about 60% of the real-world networks and the CLC-based CDSs to be of the largest node size for more than 40% of the real-world networks. The authors observe the computationally light LCC'DC-based CDS node size to be the same as the computationally heavy BWC-based CDS node size for about 50% of the real-world networks.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3