The Future for Civilian UAV Operations

Author:

Kille Tarryn1,Bates Paul R.1,Lee Seung Young1,Kille David Murray1

Affiliation:

1. University of Southern Queensland, Australia

Abstract

The future looks bright for unmanned aerial vehicles (UAVs). Their ability to carry sophisticated imaging equipment attached to lightweight vehicles, to hover in position despite incremental weather conditions, to fly simple missions, and takeoff and land automatically, combined with their comparatively (compared to manned aircraft) lower investment and operational costs has driven a paradigm shift in the history of air transport. This chapter is organized around six themes that underscore the current discourse regarding the future of UAVs in civilian commercial operations, as well as highlighting the discussions of the previous chapters regarding policy and certification, technology, training, social and economic forces, air cargo, and the effect of UAVs on other sectors of the air transport industry.

Publisher

IGI Global

Reference57 articles.

1. Airbus. (2017). Airbus, Rolls-Royce, and Siemans team up for electric future Partnership launches E-Fan X hybrid-electric flight demonstrator. Retrieved from https://www.airbus.com/newsroom/press-releases/en/2017/11/airbus--rolls-royce--and-siemens-team-up-for-electric-future-par.html

2. Preliminary architectonic design for a smart solar-powered UAV

3. Regulation and Technological Change;D.Allen;Australia’s Red Tape Crisis,2018

4. Antcliff, K. R., Moore, M. D., & Goodrich, K. H. (2016). Silcon Valley as an Early Adopter for On-Demand Civil VTOL Operations. Paper presented at the 16th AIAA Aviation Technology, Integration, and Operations Conference.

5. Future aircraft concept in terms of energy efficiency and environmental factors

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blended Wing-Body Unmanned Aerial Transport Aircraft: A conceptual design;Environment-Behaviour Proceedings Journal;2022-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3