Computational Tools and Techniques to Predict Aquatic Toxicity of Some Halogenated Pollutants

Author:

Satpathy Raghunath1ORCID

Affiliation:

1. Majhighariani Institute of Technology and Science, India

Abstract

Halogenated organic compounds are usually xenobiotic in nature and used as ingredients for the synthesis of pesticides, solvents, surfactants, and plastics. However, their introduction to the aquatic ecosystems resulted in ecological danger due to their toxic effects. The usual method of toxicity assessment is by performing the experimental approach by considering some model organism. In this aspect the computational techniques such as QSAR (quantitative structure activity relationship) is considered an effective method. By computing several molecular features and the experimental activity, the toxic effect of a compound can be correlated. This chapter describes the aquatic toxicity of the compounds. The information about different computational resources (databases, tools, and modeling tools) have been given. Also, the application of QSAR to predict aquatic toxicity of different halogenated compounds available in the literature has been reviewed.

Publisher

IGI Global

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative Structure-Activity Relationship (QSAR) Study of Potential Phytochemicals for the Development of Drugs Against Neurological Diseases;Multidisciplinary Applications of Natural Science for Drug Discovery and Integrative Medicine;2023-06-16

2. Image Analysis and Deep Learning Web Services for Nano informatics;Chemometrics and Cheminformatics in Aquatic Toxicology;2021-10-13

3. Application of Dehalogenase Enzymes in Bioremediation of Halogenated Pollutants;Advances in Environmental Engineering and Green Technologies;2021

4. Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform;Nanomaterials;2020-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3