Parameter Settings in Particle Swarm Optimization

Author:

Mohan Kamalapur Snehal1,Patil Varsha2

Affiliation:

1. K. K. Wagh Institute of Engineering Education and Research, India

2. Matoshree College of Engineering and Research Center, India

Abstract

The issue of parameter setting of an algorithm is one of the most promising areas of research. Particle Swarm Optimization (PSO) is population based method. The performance of PSO is sensitive to the parameter settings. In the literature of evolutionary computation there are two types of parameter settings - parameter tuning and parameter control. Static parameter tuning may lead to poor performance as optimal values of parameters may be different at different stages of run. This leads to parameter control. This chapter has two-fold objectives to provide a comprehensive discussion on parameter settings and on parameter settings of PSO. The objectives are to study parameter tuning and control, to get the insight of PSO and impact of parameters settings for particles of PSO.

Publisher

IGI Global

Reference102 articles.

1. Analytical and empirical study of particle swarm optimization with a sigmoid decreasing inertia weight;A.Adriansyah;Regional Conference on Engineering and Science,2006

2. Angeline, P. (1995). Adaptive and self-adaptive evolutionary computations.Computational Intelligence: A Dynamic Systems Perspective. IEEE Press.

3. Ardizzon, G., Cavazzini, G., & Pavesi, G. (2015). Adaptive acceleration coefficients for a new search diversification strategy in particle swarm optimization algorithmsInformation Sciences, 299, 337–378..

4. Competitive Approaches to PSO Algorithms via New Acceleration Co-Efficient Variant with Mutation Operators

5. Balaprakash, P., Birattari, M., & Stutzle, T. (2007). Improvement strategies for the F-race algorithm: Sampling design and iterative refinement. In Lecture Notes in Computer Science: vol. 4771. Hybrid Metaheuristics,4th International Workshop, Proceedings (pp. 108-122). Berlin: Springer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3