Abstract
Using three-dimensional visualization of nucleic acid molecules, obtained in the previous chapter, an analysis of the geometry of nucleic acid molecules in the space of higher dimension is carried out. It is shown that phosphoric acid residues and five-carbon sugar molecules in a double-stranded nucleic acid form polytopes of higher dimension with anti-parallel edges. These polytopes are of type n-cross-polytope (n = 5 for phosphoric acid residues, n = 13 for sugar molecules). It was found that these n-cross-polytopes located in right- and left-twisted spirals are enantiomorphic. It has been found that in cross-polytopes constructed of two sugar molecules there are 12 coordinate planes, each of which may contain a bond of nitrogenous bases (one of the 12 known ones). The formation of codons (triplets) corresponds to the separation in space of the highest dimension of nucleic acids of three-dimensional regions. This also occurs in the ribosomes upon contact with transport and adapter RNA during protein synthesis.