Smart Temperature Sensors

Author:

Zaher Ashraf A.1

Affiliation:

1. American University of Kuwait, Kuwait

Abstract

Many real-world applications depend on temperature sensing and/or control. This includes a wide range of industrial processes, chemical reactors, and SCADA systems, in addition to other physical, mechanical, and biological systems. With the advancement of technology, it became possible to produce a new generation of smart and compact temperature sensors, which are capable of providing digital outputs that are more accurate, robust, and easily interfaced and integrated into measurement and control systems. This chapter first surveys traditional analog temperature sensors, such as RTDs and thermocouples, to provide a strong motivation for the need to adopt better and smarter techniques that mainly rely on digital technology (e.g., CMOS designs). Different interfacing techniques that do not need ADCs are introduced, including the programmable Arduino microcontrollers. Different applications will be explored that include automotive accessories, weather forecast, healthcare, industrial processing, firefighting, and consumer electronics. Both wired and wireless technologies, including the IoT, will be investigated as means for transmitting the sensed data for further processing and data logging. A special case study to provide information redundancy in industrial SCADA systems will be analyzed to illustrate the advantages and limitations of smart temperature sensors. The chapter concludes with a summary of the design effort, accuracy, performance, and cost effectiveness of smart temperature sensors while highlighting future trends in this field for different applications.

Publisher

IGI Global

Reference30 articles.

1. Agarwal, T. (2015). Heat Sensor Circuit and Working Operation. Retrieved from: https://www.elprocus.com/heat-sensor-circuit-and-working-operation/

2. azom.com. (2010). RTDs: Principle of Operation, Materials, Configuration and Benefits. Retrieved from: https://www.azom.com/article.aspx?ArticleID=5573

3. Boyer, S. (2009). SCADA: Supervisory Control and Data Acquisition (4th ed.). ISA: The Instrumentation, Systems, and Automation Society.

4. Measurements and characterization of air temperature sensors for weather stations.;M.Catelani;Proceedings of the IEEE International Conference on Instrumentation and Measurement Technology,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3