Extraction of Preformed Mixed Phase Graphene Sheets from Graphitized Coal by Fungal Leaching

Author:

Balachandran Manoj1

Affiliation:

1. Christ University, India

Abstract

The potential use of coal as source of carbon nano structure is seldom investigated. Herein we report a facile fungal solubilization method to extract mixed phase carbon structure from low grade coal. Coal had been used as a primary source for the production of carbon nanostructure with novel property, in addition to its main utility as a fuel. The major hurdle in its application is the inherent mineral embedded in it. An environmentally benign demineralization procedure make coal as a widely accepted precursor for the novel carbon materials. With Aspergiilus niger leaching, the randomly oriented preformed crystalline mixed phase nanocarbon in coal can be extracted. Raman studies revealed the presence of E2g scattering mode of graphite. The sp3 domains at ~1355 cm-1 (D band) is an indication of diamond like structure with disorder or defect. In the 2D region, multilayer stacking of graphene layers is noticed. The ratio of the defect to graphitic bands was found to be decreasing with increasing rank of coal. Bio leaching of coal enhances the carbon content in coal while eliminating the associated minerals in it. These defected carbon is an ideal material for graphene quantum dots and carbon dots, which are useful in drug delivery and bio imaging applications.

Publisher

IGI Global

Reference28 articles.

1. Biological elimination of sulphur from high sulphur coal by Aspergillus-like fungi.;A.Celin;Fuel,2005

2. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals

3. Probing the Nature of Defects in Graphene by Raman Spectroscopy

4. Elcey, C. D., & Manoj, B. (2010). Demineralization of coal by stepwise leaching: A study of sub- bituminous Indian coal by FTIR and SEM, Journal of the University Chemical Technology and metallurgy, 45(4), 385-390.

5. Elcey, C. D., & Manoj, B. (2013). Demineralization of sub-bituminous Coal by fungal leaching: structural characterization by X-ray and FTIR analysis. Research Journal of Chemistry and Environment, 17(8), 11-15.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3