Innovation Success Over Time of Alliances With Different Strategic and Cooperation Objectives

Author:

Manuhutu Khrisna Ariyanto1,von Raesfeld Ariane1,Geurts Peter1

Affiliation:

1. University of Twente, The Netherlands

Abstract

In response to uncertainty of prospective technologies and how they might fit market demand, firms tend to establish R&D alliances. In this chapter the effect over time of continuation of underperforming R&D alliances on innovation performance during the pre-market stage is investigated. This stage is characterized by non-linearity, as expected outcomes and market demands are uncertain. Literature suggests that computational modeling in particular agent-based modeling can be used to investigate such non-linear processes. Agent based modeling starts with simple behavioral rules that develop into emergent system-level behaviors, and in that way controlled system level experiments are used to identify in an inductive way causal mechanisms that drive the system development. In this chapter's simulation model, an agent decides to continue its R&D alliance based on its strategic and cooperation objectives. After evaluating if the strategic goals is met, firms can decide about the extent to which to continue the R&D alliances if the strategic goal is not met. This is called persistency. The model is aimed to explain developmental paths and patterns of the co-evolution of alliances and technology. Despite suggestions to investigate non-linear processes in the pre-market phase by using an agent-based model, agent-based models so far do not focus on the impact of alliance continuation on innovation performance over the path of technology development. In previous research these paths mainly have been investigated in case and cross sectional studies but not in an agent based model. A base-line model is developed and the extent to which it reflects reality is analyzed in order to improve the model's performance.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3