Affiliation:
1. Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India
2. Department of Computer Science and Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
Abstract
Information is second level of abstraction after data and before knowledge. Information retrieval helps fill the gap between information and knowledge by storing, organizing, representing, maintaining, and disseminating information. Manual information retrieval leads to underutilization of resources, and it takes a long time to process, while machine learning techniques are implications of statistical models, which are flexible, adaptable, and fast to learn. Deep learning is the extension of machine learning with hierarchical levels of learning that make it suitable for complex tasks. Deep learning can be the best choice for information retrieval as it has numerous resources of information and large datasets for computation. In this chapter, the authors discuss applications of information retrieval with deep learning (e.g., web search by reducing the noise and collecting precise results, trend detection in social media analytics, anomaly detection in music datasets, and image retrieval).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献