Neural Network Models

Author:

Pessa Eliano1

Affiliation:

1. University of Pavia, Italy

Abstract

The Artificial Neural Network (ANN) models gained a wide popularity owing to a number of claimed advantages such as biological plausibility, tolerance with respect to errors or noise in the input data, learning ability allowing an adaptability to environmental constraints. Notwithstanding the fact that most of these advantages are not typical only of ANNs, engineers, psychologists and neuroscientists made an extended use of ANN models in a large number of scientific investigations. In most cases, however, these models have been introduced in order to provide optimization tools more useful than the ones commonly used by traditional Optimization Theory. Unfortunately, just the successful performance of ANN models in optimization tasks produced a widespread neglect of the true – and important – objectives pursued by the first promoters of these models. These objectives can be shortly summarized by the manifesto of connectionist psychology, stating that mental processes are nothing but macroscopic phenomena, emergent from the cooperative interaction of a large number of microscopic knowledge units. This statement – wholly in line with the goal of statistical mechanics – can be readily extended to other processes, beyond the mental ones, including social, economic, and, in general, organizational ones. Therefore this chapter has been designed in order to answer a number of related questions, such as: are the ANN models able to grant for the occurrence of this sort of emergence? How can the occurrence of this emergence be empirically detected? How can the emergence produced by ANN models be controlled? In which sense the ANN emergence could offer a new paradigm for the explanation of macroscopic phenomena? Answering these questions induces to focus the chapter on less popular ANNs, such as the recurrent ones, while neglecting more popular models, such as perceptrons, and on less used units, such as spiking neurons, rather than on McCulloch-Pitts neurons. Moreover, the chapter must mention a number of strategies of emergence detection, useful for researchers performing computer simulations of ANN behaviours. Among these strategies it is possible to quote the reduction of ANN models to continuous models, such as the neural field models or the neural mass models, the recourse to the methods of Network Theory and the employment of techniques borrowed by Statistical Physics, like the one based on the Renormalization Group. Of course, owing to space (and mathematical expertise) requirements, most mathematical details of the proposed arguments are neglected, and, to gain more information, the reader is deferred to the quoted literature.

Publisher

IGI Global

Reference141 articles.

1. Applying Multiple Linear Regression and Neural Network to Predict Bank Performance.;N. M.Abu Bakar;International Business Research,2009

2. Associative Dynamics in a Chaotic Neural Network

3. Chaotic neural networks

4. Modeling Brain Function

5. Radial basis function approach to nonlinear Granger causality of time series

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3